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A B S T R A C T   

Harmful algal blooms (HABs) have severe environmental and economic impacts worldwide. Improving HAB 
detection is crucial because massive blooms are likely to increase in both frequency and amplitude in the next 
decades due to global warming and escalating coastal eutrophication. While satellite remote sensing has proved 
useful to detect red tides and support HAB monitoring, the discrimination of the dominant bloom-forming species 
is still a challenge, all the more as the observation of highly concentrated phytoplankton patches can be 
hampered by a too coarse spatial resolution. Moreover, the majority of HAB studies generally had a regional 
focus, and a limited number of species were separately documented so far. Here, we provide a broader 
perspective for red tides remote sensing to better resolve HAB optical and taxonomical diversity. The main 
objective of the present study was to identify how many optical bloom types could be recognized with the high 
spatial resolution Sentinel-2 (S2) satellite mission. For that purpose, an extensive database of massive, nearly 
monospecific blooms, both documented in situ and using synchronous S2 observation was compiled. More than 
100 S2 images of various red tides were selected worldwide. Altogether, the S2 database covered the typical 
reflectance spectra of 27 red tide forming species. The remote-sensing reflectance of each red tide was analysed 
to evaluate S2 ability to distinguish the dominant species of the bloom. A hierarchical clustering analysis sug
gested that six optical bloom types could be identified: (1) surface accumulation of cyanobacteria or of green 
Noctiluca scintillans, (2) surface accumulation of red N. scintillans (a purely heterotrophic plankton devoid of 
chlorophyll a), (3) red tides of Mesodinium rubrum (a phycoerythrin-bearing ciliate), (4) green seawater discol
orations of Lepidodinium chlorophorum (a dinoflagellate with unusual carotenoids), (5) blooms dominated by a 
dinoflagellate such as Prorocentrum, Gymnodinium, Lingulodinium polyedra, Gonyaulax or Alexandrium, and (6) 
brown tides dominated by a dinoflagellate (such as Karenia, Karlodinium veneficum, Protoceratium reticulatum, 
Margalefidinium polykrikoides, or Tripos fusus), a prymnesiophyte (Phaeocystis), or a pelagophyte (Aureococcus 
anophagefferens). While the results presented here are inherently limited by the concomitant availability of in situ 
and S2 observations, as well as by S2 spectral resolution, it is a step forward to an improved understanding of 
HAB bio-optical diversity.   

1. Introduction 

Red tides are massive concentration of phytoplankton biomass 
caused by the growth and/or physically-driven accumulation of photo
autotrophic, mixotrophic, or purely heterotrophic microalgae (Ryther, 

1955; Smayda, 1997a), discolouring seawater with a variety of green, 
orange, reddish or brownish shades and hues (Dierssen et al., 2006; 
Siano et al., 2020). Although seemingly uncomplicated, defining a red 
tide is a complex task (Smayda, 1997b; Ericson, 2017; Wells et al., 
2020). For the sake of simplicity, a red tide will be here defined as a 
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massive accumulation of phytoplankton (including blooms of cyano
bacteria) in the upper layer of the water column, for which the pig
mented biomass is high enough to cause blatant seawater discoloration, 
whatever its colour (i.e. brown, red, yellow, green, etc.). Besides their 
esthetical annoyance, red tides are generally classified as “harmful algal 
blooms” (HABs) because the causative species produce toxins that 
accumulate in food webs and/or because the remineralization of high 
microalgal biomass by bacteria results in hypoxia leading to mass 
mortality of marine fauna (Hallegraeff, 1993). Red tides alter marine 
ecosystems and pose severe risks to human health, aquaculture, and 
food security (Anderson, 2009; Brown et al., 2020). 

Red tides have been reported since historical times: several authors 
interpreted ancient descriptions of seawater discoloration as phyto
plankton blooms, such as the red waters of the Nile river in the Bible 
(cited in Hallegraeff, 2003), as well as the many occurrences of “wine- 
like” and “purple” seawater discoloration in Homer’s Odyssey (Goy, 
2003). Nowadays red tides are a major concern worldwide, all the more 
as the HAB risk has been exacerbated by escalating eutrophication, 
global warming, associated poleward shift of marine species, wide- 
ranging spread of non-indigenous species, overall degradation of 
water quality and biodiversity loss that characterize modern industrial 
societies (Anderson, 2009; Berdalet et al., 2016; Glibert, 2017; Halle
graeff et al., 2021). 

In that context, it is of the utmost importance to develop an increased 
understanding of the ecological processes underlying massive phyto
plankton blooms (Smayda, 1997a; Wells et al., 2015, 2020), as well as to 
implement a global HAB monitoring system (Anderson, 2009; Anderson 
et al., 2019). By providing synoptic observations of radiometric changes 
associated with variations in seawater coloured constituents, ocean 
colour satellite remote sensing can document when and where red tides 
occur, thus making it possible to generate statistical descriptors of bloom 
spatial and temporal dynamics (Gower et al., 2008; IOCCG, 2021). 
While many remote sensing studies of high biomass blooms are available 
in the literature, most of them focused on one dominant species in a 
given case study area, such as Karenia brevis in the Gulf of Mexico 
(Carder and Steward, 1985; Stumpf et al., 2003; Tomlinson et al., 2009), 
Trichodesmium in Australian waters (McKinna et al., 2011; Blondeau- 
Patissier et al., 2018), Noctiluca scintillans in the China Sea (Qi et al., 
2019), Lingulodinium polyedra off California (Kahru et al., 2021) and in 
South Africa (Pitcher et al., 2019), cyanobacteria in the Baltic Sea 
(Kutser et al., 2006; Kahru et al., 2007), as well as Alexandrium mon
ilatum, Prorocentrum minimum, or other red tide species in the Ches
apeake Bay (Wolny et al., 2020). Despite the relative abundance of HAB 
remote sensing studies over the past decades, the number of documented 
bloom-forming species is still very limited in comparison to the ~300 
known taxa of red tide producing species (Sournia, 1995). 

One reason for such a shortcoming is that accurate observation of red 
tides is extremely challenging in coastal areas where phytoplankton 
concentration can drastically change over time scales from minutes to 
days, and where its spatial distribution typically displays small-scale 
variability associated with fronts and sub-mesoscale patchiness 
(Gower et al., 1980; Franks, 1992; Cloern and Jassby, 2010). Satellite 
missions all present limitations in temporal, spatial, and/or spectral 
resolution when it comes to monitoring phytoplankton patches in es
tuaries, bays, fjords, or coastal lagoons (Blondeau-Patissier et al., 2014; 
Muller-Karger et al., 2018; Schaeffer and Myer, 2020). Compared to 
previous and current sensors, the multispectral imager (MSI) onboard 
the Sentinel-2 (S2) satellites has been demonstrating improved capa
bilities for the detection of nearshore HABs due to its ability to observe 
inland and coastal waters at a spatial resolution of ~20 m in 10 spectral 
bands from the visible to short-wave infrared spectral domains (Cabal
lero et al., 2020). In addition, S2/MSI provides accurate measurements 
of the water-leaving radiance due to the development and imple
mentation of atmospheric correction and deglinting algorithms specif
ically designed for optically complex coastal zones (Pahlevan et al., 
2021). Despite such enhanced observation capabilities, S2/MSI has not 

been fully exploited for red tides observation: S2 is still poorly integrated 
in HAB remote sensing studies (IOCCG, 2021), and only a modicum of 
red tides species has been investigated so far over a limited number of 
regional cases (Caballero et al., 2020; Rodríguez-Benito et al., 2020; 
Bramich et al., 2021; Caballero and Navarro, 2021; Roux et al., 2022). A 
more exhaustive and broader assessment of the ability of satellite remote 
sensing (in general) and of S2 (in particular) to detect and discriminate 
red tide species is still lacking. 

In that context, our main objective was to pool together, in a single 
study, a worldwide database of red tides detected by S2 and for which 
the causative species has been concurrently identified from field sam
pling. Such a geographically and taxonomically diverse compilation of 
high biomass blooms was then used to characterize the typical reflec
tance of as many red tides species as possible, and to identify how many 
optical bloom types could be discriminated from their reflectance 
signature. More generally, by investigating the overall relationship be
tween the taxonomical and optical diversity of massive coastal blooms, 
this study aimed at providing new perspectives in HAB research using 
high spatial resolution satellite remote sensing. 

2. Material and method 

2.1. Sentinel-2 red tide database 

A S2 database of highly concentrated phytoplankton blooms was 
compiled from a systematic search of in situ HAB events available in the 
harmful algae event database (HAEDAT), which contains worldwide 
records of harmful algal blooms since 1985 (Hallegraeff et al., 2021). 
The HAEDAT database was searched from 2015 to 2021 (i.e., since the 
start of the S2 mission) using “high phytoplankton concentration” as 
search criteria. From an initial set of 554 entries, a first subset of 304 
events was extracted to only select the bloom records for which the 
causative species have been identified from microscopic analysis of field 
samples. The level of details provided in the selected HAEDAT dataset 
varied a lot from one record to another. The minimal information only 
contained the name of the dominant species, whereas some records 
included additional information on seawater discoloration, toxins, 
chlorophyll-a (Chl a) concentration, cell number, and/or co-occurring 
species. 

The database of high-biomass blooms was complemented by a search 
of the French phytoplankton and phycotoxin monitoring network 
(REPHY). The REPHY is a large network of long-term time series of 
phytoplankton flora and toxins along the French coasts, operating since 
the 1980s (Belin et al., 2021). The REPHY database contains the detailed 
composition and abundance of microphytoplankton assemblage 
observed at fixed and regularly sampled stations. Phytoplankton events 
occurring after July 2015 were selected when a single species or genus 
was dominating the whole community by >85% and when its abun
dance was >105 cells L− 1. 

The red tide database was complemented by the compilation of 
massive bloom records documented in the scientific literature (Cabal
lero et al., 2020; Ershadifar et al., 2020; Smith and Bernard, 2020; Qi 
et al., 2020; Wolny et al., 2020; Caballero and Navarro, 2021; Karlson 
et al., 2021; Dolatabadi et al., 2021; Kahru et al., 2021; Roux et al., 
2022). Results from regional monitoring reports and citizen science (e. 
g., Phenomer project, Siano et al., 2020) were also included. Blooms 
where several species co-occurred at high concentration were not 
selected. For example, a massive bloom observed in Chile was dis
regarded because two predominant dinoflagellate species (Margalefini
dum sp. and Lepidodinium chlorophorum) were reported as being 
responsible for the seawater discoloration (Rodríguez-Benito et al., 
2020), thus creating a spectral confusion between their reflectance 
fingerprints. 

From the large list of field records preliminary gathered from the 
HAEDAT, REPHY, and various additional in situ observations, only 
bloom events synchronous to cloud-free S2 acquisitions were selected, 
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and limited to the cases where a phytoplankton seawater discoloration 
was conspicuously visible on the scene (see 2.3 for more information on 
the detection of bloom pixels). In fine, the final database was composed 
of bloom events for which (i) in situ information of the causative species 
was available, (ii) the phytoplankton assemblage was essentially 
dominated by one species, and (iii) resulting in obvious seawater 
discoloration sufficiently large to be visually identified on a concurrent 
cloud-free S2 observation at a spatial resolution of 20 m. From the 
atmospherically corrected and deglinted S2 red tide database (see 2.2), a 
spectral library of remote-sensing reflectance (Rrs) was compiled (see 
2.3), and further analysed in order to evaluate S2 ability to distinguish 
the dominant phytoplankton genus or species in the case of highly 
concentrated blooms (see 2.4). 

2.2. Atmospheric and glint correction of Sentinel-2 data 

Level 1 (L1C) S2/MSI data were downloaded from the Copernicus 
open access hub. The algorithm for atmospheric correction (AC) and 
sunglint removal of S2-like images (GRS) was applied to L1C data 
(Harmel et al., 2018) after resampling at a spatial resolution of 20 m to 
retrieve the spectral remote-sensing reflectance, Rrs(λ). GRS exploits the 
spectral information in the shortwave infrared (SWIR) bands where the 
water column is virtually black to proceed with the sunglint correction. 
In the case of massive cyanobacterial and Noctiluca blooms, which 
potentially produce a non-negligible signal in the SWIR bands, the glint 
correction was turned off. Similarly, the land mask was removed in that 
case to avoid flagging as “vegetation” water pixels characterized by 
extremely high Rrs(λ) in the infrared associated with surface accumu
lation of floating microalgae. The performance of the GRS processing 
was assessed using in situ Rrs(λ) match-ups specifically acquired during 
massive blooms (see Figs. S1–1,2 in supplementary material #1) and 
compared to other commonly used AC algorithms (see Table S1 in 
supplementary material #1). The GRS algorithm was selected because it 
performed very satisfactorily in the case of high biomass blooms, and 
contains a deglinting method that prevented the systematic masking of 
many bloom pixels. 

2.3. Compilation of red tide spectral library 

For each image of the S2 red tide database, bloom pixels were 
selected using a combination of visual and radiometric criteria with the 
objective of identifying the most concentrated phytoplankton patches. 
Scene features were inspected in true (RGB) and false-colour (REGB) 
composites using the Rrs(λ) of S2 spectral bands centred at 665, 560, and 
490 nm, and 705, 560 and 490 nm, respectively. The rationale for using 
the REGB composite with the band at 705 nm in the red channel is that a 
peak at the red-edge region is expected in the case of high phytoplankton 
biomass, thus highlighting the bloom from the background. In the case 
of a bloom, Rrs(λ) at 665 nm is reduced due to the influence of high Chl a 
absorption, whereas Rrs(λ) displayed a peak at 705 nm resulting from the 
interplay between particle backscattering with pure seawater and Chl a 
absorption (Gitelson, 1992). The Sentinel application platform software 
(SNAP) was used for image visualization by adjusting the linear stretch 
of each RGB or REGB band manually, thereby resulting to different 
settings between images. The setting of each image is detailed in the 
corresponding figure’s legend. 

A radiometric indicator, namely the normalized difference chloro
phyll index (NDCI, Mishra and Mishra, 2012) was also computed to 
detect patches of high Chl a concentration. For each S2 observation, a 
visual analysis of the RGB, REGB, and NDCI images was performed to 
select 10 pixels amongst the highest patches of Chl a concentration, from 
which the averaged Rrs(λ) was computed. The reason to select pixels 
with conspicuously high phytoplankton biomass was that the optical 
variability associated with non-bloom constituents (coloured dissolved 
organic matter (CDOM), non-algal particles (NAP), and phytoplankton 
species other than the predominant taxon) was minimized. The resulting 

spectrum was considered as the typical Rrs(λ) spectrum of a given pre
dominant phytoplankton species and/or genus observed at very high 
concentration during a massive bloom event. Then, all the Rrs(λ) spectra 
were compiled to create a spectral library of S2 red tides, from which the 
main bloom types were discriminated and analysed. 

2.4. Analysis of the red tide spectral library 

The Rrs(λ) spectra were standardized in order to prioritize the in
fluence of the spectral shape during the classification process. The 
standardized remote-sensing reflectance was defined as: 

Rs
rs(λ) =

Rrs(λ) − Rrs(490)
∫ 865

490 Rrs(λ) dλ
(1) 

Though the subtraction of Rrs(490) modifies the reflectance shape, it 
was done to reduce possible bias associated with AC uncertainties, 
which could occur in the blue range of the visible spectrum due to 
variation in aerosol optical properties. Subtracting Rrs(490) also limits 
the influence of varying amounts of CDOM and NAP (which are higher in 
this spectral range than at longer wavelengths) on the classification 
process. By virtue of the standardization, the variability associated with 
the changes in Rrs(λ) amplitude (which is associated with the variation 
in Chl a concentration, as well as with varying concentrations in CDOM 
and NAP) was minimized, thus enabling the classification process to be 
mostly driven by the reflectance’s spectral shape (whose variation is 
associated with pigments composition, phytoplankton cell size and 
refractive index). 

When several species from the same genus were present in the 
spectral library, the corresponding Rrs(λ) spectra were pooled together 
and averaged at genus level because the discrimination of the bloom- 
forming phytoplankter at species level is generally extremely chal
lenging using multispectral information. Similarly, the occurrences of 
the same species were grouped and the species-averaged Rrs(λ) was 
computed. Averaging the standardized Rrs(λ) at species and/or genus 
level made it possible to reduce the phenotype variability within a single 
species, or the inter-specific variability within a single genus, as well as 
to increase the geographical and temporal robustness of the selected 
bloom types. In the case of blooms dominated by Noctiluca scintillans, the 
green and red forms were distinguished because the presence of a 
photosynthetic symbiont within the green Noctiluca has a significant 
impact on its reflectance spectral shape (Qi et al., 2019), compared to 
the red Noctiluca which is purely heterotroph and does not contain Chl a 
(Harrison et al., 2011). 

A hierarchical cluster analysis (HCA) was then used to classify the 
bloom types into distinct optical groups using the standardized and 
species/genus-averaged Rrs(λ) spectra as input vectors, using the den
dextend package available as part of the R software for statistical 
computing. The eight S2 spectral bands from 490 to 865 nm were taken 
into account in the HCA. The SWIR spectral bands at 1610 and 2185 nm 
were not considered in the classification because the SWIR reflectance 
was not significantly different from zero in many cases. The spectral 
band at 443 nm was excluded in order to minimize the influence of AC 
uncertainties on the clustering results, and because its spatial resolution 
(60 m) is too low to detect small-scale features. The HCA is an unsu
pervised classification algorithm that partitions a given set of input data 
into distinct groups along a hierarchical cluster tree, which has been 
previously applied to cluster multispectral Rrs(λ) field measurements in 
relation to their pigment assemblages (Torrecilla et al., 2011), or to 
classify hyperspectral absorption and reflectance of phytoplankton cul
tures into different taxonomic groups (Xi et al., 2015; Soja-Woźniak 
et al., 2018). The HCA method depends on the linkage algorithm used to 
compute the pairwise distance between the input vectors: a cosine dis
tance was selected in the present study (Millie et al., 1997; Torrecilla 
et al., 2011). The distance (d) is defined as one minus the cosine of the 
angle between each pair of objects: 
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d(x1, x2) = 1 − cos(θ) = 1 −
x1 • x2

‖x1‖ • ‖x2‖
(2)  

where the x1 and x2 vectors correspond to a pair of standardized Rrs(λ) 
spectra at S2 spectral bands from 490 to 865 nm. In the case of two 
similar reflectance spectra, d equals 0. The higher the dissimilarity be
tween the two spectra, the closer to 1 is d. The optimal number of 
clusters was obtained by graphically analysing the increase of the link
age distance along the nodes of the dendrogram: the point at which the 
distance started to stagnate corresponded to the optimal number of 
clusters where to cut off the classification tree, and all objects located 
below this point were assigned to a single cluster (Torrecilla et al., 
2011). For each cluster, the mean Rrs

s (λ) and its standard deviation were 
computed from the Rrs(λ) of all bloom events caused by the species 
belonging to the cluster. 

3. Results 

3.1. Taxonomic and geographic diversity of the Sentinel-2 red tide 
database 

From 2015 to 2021, a total of 108 bloom records were compiled in 
the coastal waters of 21 countries over 59 S2 tiles worldwide (Fig. 1). 
The location and date of each bloom event is detailed in supplementary 
information (suppl. material #2). 

The database covered 27 taxonomic species belonging to 20 genera 
within 5 classes (Table 1). In terms of taxonomic diversity, the database 
was dominated by two classes, with Dinophyceae (60 bloom events) and 
Cyanophyceae (32 events) covering 85% of the bloom records. The 
remaining cases were distributed into three classes: Litostomatea (8 
events), Prymnesiophyceae (6 events), and Pelagophyceae (2 events). 

While the first two classes were taxonomically diverse (19 di
noflagellates species, 5 cyanobacteria genera), the other classes were 
only composed of one or two taxa (1 ciliate species: Mesodinium rubrum, 
1 prymnesiophyte genus: Phaeocystis, and 1 pelagophyte species: Aur
eococcus anophagefferens). After averaging at species and/or genus level, 
a total number of 21 Rrs(λ) red tide spectra was obtained, corresponding 
to 20 distinct taxonomically distinct genera and the two forms of 
N. scintillans. 

3.2. Optical diversity of the S2 red tide database 

3.2.1. Overall reflectance variability 
The overall analysis of the 21 bloom spectra computed from the S2 

red tide database demonstrated a high degree of variability in Rrs(λ) 
amplitude (Fig. 2a). All Rrs(λ) spectra displayed features typical of 
massive blooms (peak at 705 nm, e.g., Gitelson, 1992) or surface scums 
(sharp red-edge increase from 665 to 740 nm and high Rrs(λ) plateau in 
the NIR from 740 to 865 nm, e.g., Spyrakos et al., 2018). For example, 
Rrs(705) varied over one order of magnitude (0.007–0.063 sr− 1) with a 
mean around 0.023 sr− 1. Bloom events with surface scums displayed 
extremely high reflectance in the NIR, with Rrs(788) > 0.04 sr− 1. For 
such type of blooms, the depth of penetration was estimated to be of the 
order of a few tens of cm (Kutser, 2004), thus suggesting that the 
compiled spectral library typically represents dense surface concentra
tion. Interestingly, blooms of the red N. scintillans were an exception to 
the general patterns: they displayed a roughly flat spectrum from 560 to 
865 nm, which was consistent with previous in situ (Astoreca et al., 
2005) and satellite (Qi et al., 2019) observations. Due to such a partic
ular spectral shape, blooms of the red N. scintillans were characterized 
with a low, slightly negative or positive NDCI around 0.017 +/− 0.027 
(not shown). For all other bloom events, the NDCI was high, ranging 
from 0.29 to 0.93, and exceeding 0.5 in 79% of the cases (not shown). 
Such a high range of NDCI suggested that the Chl a concentration 
typically exceeded 100 mg m− 3 in the sampled pixels (Mishra and 
Mishra, 2012). 

The standardization of the reflectance spectra made it possible to 
highlight spectral variations occurring in the visible domain (Fig. 2b). In 
particular, the height of the reflectance peak at 560 nm displayed a large 
range of variability. For example, Rrs

s (560) ranged from 0.05 to 1.77. 
Such a high degree of variability in the visible range was a strong driver 
for the identification of optical bloom types. 

3.2.2. Optical bloom types 
Six optical bloom types could be determined from the 21 Rrs

s (λ) 
spectra shown in Fig. 2b. The cluster tree first divided into two branches 
at a cosine distance of about 0.12; the main lower branch further 
diverged into two clusters at a distance of about 0.07, whereas the main 
upper branch eventually ramified in four clusters, whose nodes were 
respectively around 0.115, 0.035, and 0.015 (Fig. 3a). 

The two clusters from the lower branch corresponded to blooms 
caused by cyanobacteria or by the dinoflagellate Noctiluca scintillans. 
They are buoyant phytoplankton species, able to accumulate at 

Fig. 1. Location of bloom events recorded in the Sentinel-2 red tide database.  
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extremely high concentration within a thin surface layer. Their reflec
tance spectrum was characterized by a high NIR plateau (Fig. 3b). 
Interestingly, blooms caused by the red and green forms of N. scintillans 
corresponded to distinct Rrs

s (λ) clusters. The red N. scintillans composed a 
single optical bloom type: its Rrs

s (λ) has a unique spectral shape, roughly 
constant from 560 to 842 nm. Such a particular spectral shape is 
consistent with previous findings (Astoreca et al., 2005; Qi et al., 2019). 
In contrast, the green N. scintillans was part of a bloom cluster dominated 
by scums of cyanobacteria (Aphanizomenon sp., Nodularia spumigena, 

Trichodesmium sp., and Microcystis sp.), whose Rrs
s (λ) displayed the 

typical red-edge shape of massive phytoplankton surface accumulation, 
with low Rrs(λ) at 665 nm and high Rrs(λ) from 705 to 865 nm. Such a 
characteristic red-edge shape has been previously reported by Qi et al. 
(2020) for the green N. scintillans and floating cyanobacteria such as 
Trichodesmium sp., and Microcystis sp. 

The four optical bloom types of the upper branch were all charac
terized by a Rrs(λ) peak at 705 nm (Fig. 3c), a spectral feature charac
teristic of highly-concentrated phytoplankton patches (Gitelson, 1992). 

Table 1 
Phytoplankton species of the Sentinel-2 red tide database. ES = El Salvador, NL = The Netherlands, US = United States, SA = South Africa.  

Class Genus Species Blooms number Countries  

Alexandrium monilatum 1 US   
ostenfeldii 2 Peru   

digitale 2 US  
Gonyaulax polygramma 1 Iran   

spinifera 3 SA   

aureolum 1 Brazil  
Gymnodinium catenatum 1 Mexico   

impudicum 3 France 

Dinophyceae Karenia brevis 2 US   
mikimotoi 1 Japan  

Karlodinium veneficum 2 US  

Lepidodinium chlorophorum 5 France  

Lingulodinium polyedra 8 France, Spain, US  

Margalefidinium polykrikoides 5 China, US  

Noctiluca scintillans (green) 7 China, Oman  

Noctiluca scintillans (red) 6 France, Greece, Spain, US  

Prorocentrum micans 1 France   
minimum 4 US  

Protoceratium reticulatum 3 US  

Tripos fusus 2 US  

Anabaenopsis sp. 5 Spain  

Aphanizomenon sp. 8 ES, Latvia, Sweden 

Cyanophyceae Microcystis sp. 8 Brazil, China, Philippines  

Nodularia spumigena 4 Poland, Sweden  

Trichodesmium sp. 7 Australia, Brazil, Fiji, France 

Litostomatea Mesodinium rubrum 8 France, Iran, Mexico, Spain, US 

Prymnesiophyceae Phaeocystis sp. 6 Belgium, ES, France, NL 

Pelagophyceae Aureococcus anophagefferens 2 US  

Fig. 2. Sentinel-2 red tide spectral library, showing the 21 spectra obtained after grouping the 108 bloom events at genus and/or species level (Table 1). (a) remote- 
sensing reflectance Rrs(λ), and (b) standardized Rrs(λ). The 108 reflectance spectra are shown in suppl. material #3. 
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The reflectance spectra of these clusters however significantly differed 
in the visible spectral domain. Red tides caused by the ciliate Mesodinium 
rubrum, which corresponded to a single cluster, were characterized by a 
very low Rrs(λ) in the green spectral region (Fig. 3c), as previously 
observed in situ by Guzmán et al. (2016) when sampling a red tide of the 
same species. The absence of a green reflectance peak was unique to the 
M. rubrum bloom cluster. 

Another monospecific optical bloom type was constituted by Lep
idodinium chlorophorum. The reflectance spectrum of this dinoflagellate 
was characterized by an extremely high peak at 560 nm (Fig. 3c), a 
spectral feature previously observed for that species using satellite 
remote sensing (Sourisseau et al., 2016). 

Contrary to the M. rubrum and L. chlorophorum monospecific clusters, 
the two remaining optical bloom types were taxonomically very diverse. 

The shape of their reflectance spectra was also characterized by a peak at 
560 nm, though of lesser amplitude than for the L. chlorophorum bloom 
type (Fig. 3c). The cluster with the lower green reflectance peak was 
mostly composed of dinoflagellates belonging to the following genera 
and/or species: Prorocentrum, Gymnodinium, Lingulodinium polyedra, 
Gonyaulax, and Alexandrium (Fig. 3a). This cluster was constituted by 5 
dinoflagellate genera out 6, and it also contained the reflectance spec
trum of blooms dominated by cyanobacteria from the genus Anabae
nopsis. The last cluster was also dominated by dinoflagellates, which 
represented 5 of the 7 taxa: Protoceratium reticulatum, Tripos fusus, Kar
lodinium veneficum, Karenia sp., and Margalefidinium polykrikoides 
(Fig. 3a). This cluster also included blooms caused by a pelagophyte 
(Aureococcus anophagefferens) or by a prymnesiophyte (Phaeocystis). 

Fig. 3. (a) Cluster tree obtained using the 21 standardized Rrs(λ) spectra of the S2 red tide spectral library. The cut-off distance is shown with a vertical dashed line. 
(b, c) Cluster-averaged spectra of the 6 optical bloom types. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article). 
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3.2.3. Visual appearance of the optical bloom types 
To better appraise the spectral variability of clusters as well as the 

resulting diversity in associated bloom colours, several representative 
examples of S2 images are now described for each optical bloom type 

(the images off all red tides are provided in suppl. material #3). Surface 
scums of floating cyanobacteria such as Aphanizomenon sp. exhibited 
bright green colours when displayed using a standard RGB composite 
(Fig. 4b); they appeared golden bright when using a false REGB 

Fig. 4. Optical bloom type composed of cyanobacteria (Microcystis sp., Trichodesmium sp., Nodularia spumigena, and Aphanizomenon sp.) and of the green Noctiluca 
scintillans. (a) Averaged (+/− standard deviation) standardized Rrs(λ) spectrum computed from the representative spectra of 34 red tides recorded in Australia, Brazil, 
China, El Salvador, Fiji, Guadeloupe, Latvia, Oman, Philippines, Poland, and Sweden. Sentinel-2 examples of a bloom of Aphanizomenon sp. in Sweden, 20 July 2019 
(b, c), and of green N. scintillans in the Oman Sea, 14 March 2019 (d, e). The same image is either displayed using a RGB (b, d) or a REGB (c, e) false colour composite. 
The colour histogram was uniformly adjusted as follow: 0.01 sr− 1 for all bands. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 
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composite (Fig. 4c). Cyanobacteria blooms dominated by N. spumigena 
or Microcystis sp. had a similar visual appearance. On the contrary 
blooms of Trichodesmium had a different colour: they appeared dark 
green and reddish on the RGB and REGB images, respectively (supple
mentary material). Apart from the particular case of Trichodesmium red 
tides, surface aggregations of floating cyanobacteria could be confused 

with blooms of green N. scintillans due to similarity in their reflectance 
shape (Fig. 4a), spatial features, and visual appearance (Fig. 4d, e). 
Interestingly, surface aggregations of red N. scintillans could not be 
confused with blooms of other buoyant microalgae: their unique, nearly 
flat reflectance shape (Fig. 5a), made them appear similarly golden 
bright on both RGB and REGB composites (Fig. 5b-d). 

Fig. 5. Optical bloom type composed of red N. scintillans. (a) Averaged (+/− standard deviation) standardized Rrs(λ) spectrum computed from the representative 
spectra of 6 red tides recorded in France, Greece, Spain, and the US. Sentinel-2 examples of red N. scintillans blooms in Spain off Gran Canaria Island, 13 April 2016 
(b, c) and in the Ria de Vigo, 4 September 2021 (d, e). The same image is either displayed using a RGB (b, d) or a REGB (c, e) false colour composite. The colour 
histogram was uniformly adjusted as follow: 0.01 sr− 1 for all bands. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article). 
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The other phytoplankton blooms were generally better high
lighted on REGB composites than on standard RGB displays (Figs. 6- 
9). This was particularly obvious in the case of M. rubrum red tides, 
which constituted a monospecific cluster due to its unique reflectance 
shape and visual appearance (Fig. 6). Compared to the other optical 

bloom types, Rrs(560) was extremely low in all investigated blooms 
of M. rubrum (the standardized reflectance was 0.06 +/− 0.18, 
Fig. 6a). Blooms from this ciliate therefore appeared dark burgundy 
red on RGB images (Fig. 6b, d) and vivid ruby red on REGB false 
composites (Fig. 6c, e). 

Fig. 6. Optical bloom type composed of M. rubrum. (a) Averaged (+/− standard deviation) standardized Rrs(λ) spectrum computed from the representative spectra of 
8 red tides recorded in France, Iran, Mexico, Spain, and the US. Sentinel-2 examples of M. rubrum red tides in France off the Loire River estuary, 12 April 2017 (b, c) 
and Oléron Island, 18 April 2020 (d, e). The same image is either displayed using a RGB (b, d) or a REGB (c, e) false colour composite. The colour histogram was 
uniformly adjusted as follow: 0.02 sr− 1 for the red or NIR band, and 0.03 sr− 1 for the green and blue bands. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article). 
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Contrary to M. rubrum, blooms of L. chlorophorum were conspicuous 
on both RGB and REGB image composites, respectively appearing bril
liant green or orange, due to the extremely high green Rrs(λ) peak that 
characterized this cluster (Fig. 7). This is the sole optical bloom type for 
which the standardized Rrs(λ) at the 705 and 560 nm peaks had a similar 

magnitude (respectively 1.76 +/− 0.48, and 1.77 ±0.53, in average). 
The visual appearance and reflectance spectral shape of the last two 

clusters, both of them dominated by dinoflagellates, were quite compa
rable (Figs. 8 and 9). Both types of blooms appeared murky green and/or 
brownish on the RGB image, and in rusty orange with reddish hues on the 

Fig. 7. Optical bloom type composed of L. chlorophorum. (a) Averaged (+/− standard deviation) standardized Rrs(λ) spectrum computed from the representative 
spectra of 5 red tides recorded in France. Sentinel-2 examples of L. chlorophorum green seawater discoloration in France off the Vilaine (b, c) and Loire River estuaries 
(d, e), 21 July 2019. The same image is either displayed using a RGB (b, d) or a REGB (c, e) false colour composite. The colour histogram was uniformly adjusted as 
follow: 0.01 sr− 1 for the red or NIR band, 0.02 sr− 1 for the green band, and 0.015 sr− 1 for the blue band. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article). 
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Fig. 8. Optical bloom type composed of Prorocentrum sp., Gymnodinium sp., Lingulodinium polyedra, Gonyaulax sp., Alexandrium sp., and Anabaenopsis sp. (a) 
Averaged (+/− standard deviation) standardized Rrs(λ) spectrum computed from the representative spectra of 32 red tides recorded in Brazil, France, Iran, Mexico, 
Peru, South Africa, Spain, and the US. Sentinel-2 examples of a bloom of L. polyedra off the Vilaine River estuary (France), 14 August 2021 (b, c), and of P. minimum in 
the Chesapeake Bay (US), 16 January 2020 (d, e). The same image is either displayed using a RGB (b, d) or a REGB (c, e) false colour composite. The colour histogram 
was uniformly adjusted as follow: 0.01 sr− 1 for the red or NIR band, 0.02 sr− 1 for the green band, and 0.015 sr− 1 for the blue band. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article). 
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REGB composite. Despite some differences in the cluster-averaged reflec
tance spectra (Fig. 3c), a risk of confusion exists between these two bloom 
optical types. In particular, the standardized Rrs(560) was of the same 
order of magnitude in both cases: 0.64 (+/− 0.30) for one bloom type 
(Fig. 8a) and 0.95 (+/− 0.38) for another (Fig. 9a). 

4. Discussion 

The present study demonstrated the ability of Sentinel-2 to detect 
highly concentrated harmful algal blooms. We recommend including S2 
observations in HAB monitoring programs in complement to in situ 

Fig. 9. Optical bloom type composed of Protoceratium reticulatum, Tripos fusus, Karlodinium veneficum, Aureococcus anophagefferens, Karenia sp., Phaeocystis sp., and 
Margalefidinium polykrikoides. (a) Averaged (+/− standard deviation) standardized Rrs(λ) spectrum computed from the representative spectra of 23 red tides recorded 
in Belgium, China, El Salvador, France, The Netherlands, Japan, and the US. Sentinel-2 examples of a bloom of K. brevis off Florida (US), 7 August 2018 (b, c) and of 
Phaeocystis sp. in Belgium, 1 May 2016 (d, e). The same image is either displayed using a RGB (b, d) or a REGB (c, e) false colour composite. The colour histogram was 
uniformly adjusted as follow: 0.01 sr− 1 for the red or NIR band, 0.02 sr− 1 for the green band, and 0.015 sr− 1 for the blue band. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article). 
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sampling (or in the worst case scenario to supply the absence of field 
measurements), in order to better document phytoplankton dynamics 
(Roux et al., 2022) as well as to provide near-real time information on 
red tide extent to coastal stakeholders working in aquaculture, fisheries, 
tourism, or other industry related to water quality (Caballero et al., 
2022; Rodríguez-Benito et al., 2020). The S2 red tide database captured 
a wide range of phytoplankton diversity, bloom colours, spatial features, 
and reflectance spectral shapes (see Figs. 4-9, and suppl. material #3). 
The many shades of red, green, orange, yellow, and brown tides 
confirmed the variegated nature of seawater discoloration associated 
with algal blooms worldwide (Hallegraeff et al., 2021; Siano et al., 
2020). To our knowledge, this is the first time that so many phyto
plankton blooms were documented together in a single study at such 
spatial resolution. As such, it provides new insights and opens new 
perspectives to study highly concentrated phytoplankton blooms, as 
discussed in the next sections. 

4.1. Ecological significance of the bloom clusters 

4.1.1. Influence of biomass: blooms of buoyant cyanobacteria and 
Noctiluca 

The classification of the Rrs(λ) dataset into bloom optical types was 
primarily driven by two factors: changes in biomass, and changes in 
pigments composition. The overall spectral shape of the cyanobacteria 
and green N. scintillans bloom cluster (Fig. 3b, and Fig. 4a) was caused by 
the dense accumulation of microalgae within a thin surface layer. For 
that optical bloom type, Rrs(λ) exhibited a high NIR plateau typical of 
floating microalgae (Qi et al., 2020) and Rrs

s (λ) was consistent with the 
optical water type described as “hypereutrophic waters with scum of 
cyanobacterial bloom and vegetation-like Rrs(λ)” in Spyrakos et al. 
(2018). It is noteworthy that such a notable Rrs(λ) shape was related to 
specific traits such as the ability to form floating colonies or filaments, or 
to a distinctive cellular structure, namely the presence of buoyant gas 
vacuoles. Such ecological / morphological characteristics were common 
to all species from this cluster. Indeed, Nodularia spumigena and Apha
nizomenon flosaquae are amongst the most common filamentous bloom- 
forming cyanobacteria of the Baltic Sea (Karlson et al., 2021), the 
colonial Microcystis is a cosmopolitan bloom-forming cyanobacterium 
(Harke et al., 2016), and bloom reports of the filamentous Trichodes
mium appeared in the expedition logs of Charles Darwin and James Cook 
(cited in Capone, 2021) as well as in Jules Verne’s famous novel “20,000 
leagues under the sea” (cited in Bergman et al., 2013). Interestingly, the 
high NIR reflectance cluster composed of floating phytoplankton was 
not limited to cyanoblooms; it also contained surface accumulation of a 
vacuolated dinoflagellate, namely the green N. scintillans. While being 
heterotrophic, N. scintillans can harbour a photosynthetic green flagel
late symbiont in warm waters (Elbrächter and Qi, 1998), thus explaining 
the radiometric affinities between cyanoblooms and surface aggregation 
of green N. scintillans (Fig. 4a), as previously reported in Qi et al. (2019, 
2020). From an optical point of view, the reflectance NIR plateau likely 
resulted from (i) the extremely high backscattering coefficient of 
buoyant vacuolated species such as N. scintillans, Trichodesmium, and 
Microcystis (Astoreca et al., 2005; Dupouy et al., 2008; Moore et al., 
2017; Qi et al., 2020), and/or (ii) the negligible role of water column 
absorption in a dense layer of microalgae accumulated on top of the 
water surface, as typically observed for cyanoblooms (Quibell, 1992; 
Kutser, 2004; Matthews et al., 2012). 

The other cluster composed of surface aggregation of floating 
phytoplankton was monospecific, and consisted in “blooms” of red 
N. scintillans. In the absence of photosynthetic symbiont, surface accu
mulations of N. scintillans generally appear reddish or orange in 
temperate waters (Elbrächter and Qi, 1998). Our results confirmed that 
surface accumulations of red N. scintillans could be fingerprinted by 
satellite imagery due to their unique optical properties (Qi et al., 2019). 
The unique spectral shape of the red N. scintillans cluster (Fig. 5a) was 
presumably determined by a very particular absorption coefficient 

associated with a specific pigment composition, mainly constituted of 
carotenoids and almost completely deprived of chlorophylls (Balch and 
Haxo, 1984). The lack of Rrs(λ) valley at 665 nm was therefore very 
likely due to the absence of chlorophyll a. From a practical point of view, 
such results demonstrate that standard red-edge algorithms are not 
designed to detect surface aggregation of red N. scintillans. Specific al
gorithms, which do not depend on Chl a optical properties, are instead 
required (Qi et al., 2019). While being unique due to its atypical pigment 
composition and conspicuous reflectance shape, the red N. scintillans 
optical bloom type also consists in a remarkable ecological case of sur
face accumulation by purely heterotrophic phytoplankton. 

Contrary to the cyanobacteria and N. scintillans bloom clusters, the 
spectral shape of the four other optical bloom types (Fig. 3c, and Figs. 6- 
9) was primarily driven by the variability in pigments composition. 
Differences in phytoplankton biomass obviously occurred between the 
blooms compiled here, but such changes likely contributed at second 
order to the overall variability of the standardized Rrs(λ) spectra. Besides 
the red N. scintillans cluster, which is optically unique due to the lack of 
Chl a, two other monospecific optical bloom types were related to a 
particular pigment composition: red tides of the ciliate M. rubrum, and 
green seawater discolorations of the dinoflagellate L. chlorophorum. The 
bloom clusters primarily driven by changes in pigment composition are 
discussed in the next sub-sections. 

4.1.2. Influence of pigments type: phycoerythrin and M. rubrum red waters 
The conspicuous dark burgundy colour of M. rubrum red tides has 

been encountered at sea for long. Early records include reports of red 
waters off Chile by Darwin during the Beagle voyage (Darwin, 1839), in 
Iceland in the early 1900s (Paulsen, 1909 cited in Hart, 1943), or around 
Cape Peninsula in South Africa (Hart, 1934). Blooms of M. rubrum have 
then been frequently documented in coastal waters worldwide (Ryther, 
1967; Fenchel, 1968; Crawford, 1989; Herfort et al., 2011). The 
geographic diversity of the events collated in the present study 
(including bloom reports in France, Iran, Mexico, Spain, and the US) 
confirmed the worldwide occurrence of M. rubrum red tides (Table 1). 
For all these events, the dark red coloration can be non-ambiguously 
attributed to the presence of phycoerythrin (PE) within this ciliate 
(Gustafson et al., 2000). Indeed, the particular pigment composition of 
M. rubrum (Zapata et al., 2012; Rial et al., 2013) explains the unique 
visual aspect and spectral shape of the corresponding optical bloom 
type, with the low Rrs(λ) around 490, 560, and 665 nm being due to the 
absorption by Chl c2 and alloxanthin, PE, and Chl a, respectively 
(Fig. 10a). 

M. rubrum is a kleptoplast mixotrophic ciliate able to functionally use 
the chloroplasts acquired during the ingestion of phycobiliprotein- 
bearing cryptophytes such as Teleaulax sp. (Yih et al., 2004). For that 
reason, the resulting dark burgundy red tides could be caused by a 
dominance of the ciliate or of its prey, as well as by the co-occurrence of 
both species in high concentration (Johnson et al., 2013; Yih et al., 
2013). Furthermore, mixotrophic dinoflagellates from the Dinophysis 
genus being obligate feeders of M. rubrum (Park et al., 2006), they also 
have a cryptophyte-like pigment composition (Rial et al., 2013). While 
Dinophysis is generally found at low concentration (Reguera et al., 2012) 
even during “high” events (Díaz et al., 2021), exceptional blooms 
dominated by this dinoflagellate have been previously reported (e.g., 
Mafra et al., 2019). In the present study, the phytoplankton biomass of 
the selected red water events was dominated by M. rubrum (Souchu 
et al., 2017; Conejo-Orosa et al., 2019; Ershadifar et al., 2020). Never
theless, if captured by Sentinel-2, red tides dominated by Teleaulax sp. 
and/or Dinophysis sp. would probably have a reflectance fingerprint 
similar to that of the M. rubrum bloom cluster. 

4.1.3. Influence of pigments type: unusual carotenoid composition and 
L. chlorophorum green waters 

The vivid green appearance of seawater discoloration caused by the 
bloom-forming dinoflagellate L. chlorophorum (Elbrächter and Schnepf, 

P. Gernez et al.                                                                                                                                                                                                                                  



Remote Sensing of Environment 287 (2023) 113486

14

1996) have been frequently observed in coastal areas (Sournia et al., 
1992; Siano et al., 2020; Roux et al., 2022). The high Rrs(λ) peak around 
560 nm characterizing L. chlorophorum bloom cluster (Fig. 7a) is 
attributable to a particular pigment composition, unique within the di
versity of Dinophyceae chloroplast types (Zapata et al., 2012). Due to 
the absence of common carotenoids such as peridin (a biomarker 
pigment for dinoflagellates) or fucoxanthin (also present in some di
noflagellates, and a biomarker pigment for diatoms), the amplitude of 
pigment absorption in L. chlorophorum is very low in the 530–600 nm 
range (Fig. 10b). Beside Chl a, the main pigments of this species have 
absorption maxima around 465 nm (Chl b, violaxanthin, and neo
xanthin) and 650 nm (Chl b), and do not absorb in the green spectral 
range. Altogether, such unusual pigment composition results in 
extremely high Rrs(λ) around 560 nm, a spectral feature previously 
proposed as a radiometric marker for L. chlorophorum green seawater 
discoloration (Sourisseau et al., 2016). 

4.1.4. Influence of pigments type: peridinin, fucoxanthin, and other bloom 
clusters 

The last two optical bloom types produced the same kind of visual 
appearance and Rrs(λ) spectral shape (Figs. 8, 9). Though the corre
sponding red tide species have different pigment types, they have similar 

pigments absorption properties, and could not be discriminated at the 
spectral resolution of S2/MSI (Fig. 10c,d). One optical bloom type is 
dominated by peridin-bearing dinoflagellates (Prorocentrum, Gymnodi
nium, Lingulodinium polyedra, Gonyaulax, and Alexandrium) belonging to 
Type 1 pigment group (sensu Zapata et al., 2012), whereas the other 
cluster contains peridin-bearing dinoflagellates (Tripos fusus, Proto
ceratium reticulatum, and Margalefidinium polykrikoides) as well as 
fucoxanthin-bearing species such as the dinoflagellates Karenia sp. and 
Karlodinium veneficum, the pelagophyte Aureococcus anophagefferens, 
and the prymnesiophyte Phaeocystis. Whatever the pigment type, how
ever, their carotenoids have a broad absorption range from 400 to 600 
nm (with a maximum around 505 nm for peridinin (Fig. 10c), and 
around 490 nm for fucoxanthin (Fig. 10d)), which explain why the 
reflectance of these two optical bloom types are characterized by a 
moderately high Rrs(λ) peak at 560 nm (compared to the extremely high 
green peak of the L. chlorophorum blooms). 

4.1.5. Reflectance clusters and harmful nature of phytoplankton blooms 
Phytoplankton blooms could be harmful for several reasons: they 

produce toxins, cause damage to respiratory mechanisms of marine 
species (e.g., fish gills), and/or lead to oxygen depletion and ecosystem 
disruption (Lassus et al., 2016). While the harmful effect of a given 

Fig. 10. Position of S2A/MSI spectral response function for the bands B2, B3, and B4, and absorption characteristics of the main pigments present in M. rubrum (a), 
L. chlorophorum (b), peridin-bearing dinoflagellates (c), and Karenia sp., as an example of fucoxanthin-bearing dinoflagellate (d). The proportion of pigments relative 
to Chl a was taken from Zapata et al. (2012). The pigment absorption data (Bricaud et al., 2004; Clementson and Wojtasiewicz, 2019) was standardized to Chl a 
absorption at 675 nm. The PE absorption data was obtained from laboratory culture of the cryptophyte Teleaulax amphioxeia available at Ifremer Nantes. 
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phytoplankton bloom, if any, can be assessed using field observation 
only, it is interesting to point out here an unexpected association be
tween the Rrs(λ) clusters and the harmful nature of the investigated red 
tides. Three optical clusters were clearly associated with toxin- 
producing phytoplankton species. Within the cluster composed of 
floating microalgae, cyanobacteria such as N. spumigena, Aphanizome
non, and Microcystis can produce hepato-, neuro-, and/or cytotoxins 
(Harke et al., 2016). The cluster dominated by dinoflagellates included 
toxin-producing species such as paralytic shellfish poisoning (PSP) by 
Gymnodinium and Alexandrium, and yessotoxin (YTX) by L. polyedra and 
Gonyaulax (Karlson et al., 2021). The last cluster included fish killer 
species (Phaeocystis, Karlodinium veneficum, and Karenia mikimotoi) and 
K. brevis, a dinoflagellate able to produce harmful neurotoxin (Lands
berg et al., 2009). 

On the contrary, the monospecific bloom optical types were consti
tuted by species which do not produce toxins (e.g., L. chlorophorum, 
M. rubrum, and the red N. scintillans). However, blooms of 
L. chlorophorum can result in hypoxia events leading to fish and shellfish 
mortality (Sournia et al., 1992), presumably associated with the large 
amount of transparent exopolymer particles (TEP) produced by this 
green dinoflagellate (Roux et al., 2021, 2022). Interestingly, as red tides 
of M. rubrum can be followed by diarrhetic shellfish poisoning (DSP) 
outbreaks caused by the subsequent growth of Dinophysis (Harred and 
Campbell, 2014), the unique Rrs(λ) signature of the ciliate red tides 
could be useful to develop a Dinophysis early-warning system. While our 
study opened original perspectives for a remote estimation of the 
harmful nature of some phytoplankton blooms, a more systematic 
assessment of the optical properties of harmful vs. non-harmful phyto
plankton species is however required for further developments. 

4.2. Current limitations and perspectives for red tide remote sensing 

4.2.1. Range of applicability of the optical bloom types 
The main objective of the present study was to characterize the 

reflectance diversity of highly concentrated phytoplankton blooms 
essentially dominated by a single species. Even though massive blooms 
are not to be strictly considered as natural analogues of culture pop
ulations, they are as close as possible to a monospecific bloom end
member (Carder and Steward, 1985). The Rrs(λ) spectra compiled in the 
S2 red tide database were deliberately selected from pixels where 
phytoplankton concentration was as high as possible (based on Rrs(λ) 
variation), in order to limit the influence of other suspended coloured 
constituents. Importantly, the subtraction of Rrs(490) during the 
reflectance standardization (Eq. (1)) improved the consistency of the 
classification into optical bloom types because it limited the influence of 
AC uncertainties as well as of CDOM and NAP variability on the clus
tering process. Furthermore, by focusing on pixels displaying the 
reflectance characteristics of high surface concentration (i.e., Rrs(λ) peak 
at 704 nm and/or high NIR Rrs(λ)), the extracted spectra are more likely 
to unambiguously represent the bloom in its maximum expression. The 

selection of a reflectance spectrum typical of dense surface accumula
tion, with reduced water column interferences, was facilitated by 
Sentinel-2 high spatial resolution (20 m). Though fine-scale patchiness is 
a typical feature of phytoplankton spatial distribution (e.g., Montagnes 
et al., 1999; Bulit et al., 2004), the risk of sampling horizontally mixed 
and/or vertically diluted pixels was minimized due to S2 high resolu
tion. As such, the cluster-averaged Rrs(λ) spectra identified in the present 
study could not be used outside the particular case of massive phyto
plankton blooms, observed in a patch of high surface concentration, for 
which the NDCI is typically higher than ~0.3 (with the exception of red 
N. scintillans surface accumulation). With these limitations in mind, our 
results may help recognizing blooms in future studies: the standardized 
reflectance of highly concentrated pixels from an unidentified seawater 
discoloration can be compared with the endmember spectra of the op
tical bloom types shown in Fig. 3 and provided in Table 2, and even
tually associated with the optical cluster showing the lowest cosine 
distance. This could help “tagging” red tides in the absence of in situ 
information: if the most concentrated patches of a bloom can be iden
tified, then it can be linked to the rest of the red tide. 

While the approach developed here is not directly compatible with 
the lower spatial resolution of ocean colour satellite sensors such as 
SeaWiFS (1 km) or MERIS and Sentinel-3/OLCI (300 m), the typical 
Rrs(λ) of red tides provided in the present study could however advan
tageously complement previous approaches related to optical water type 
clustering (Moore et al., 2014; Vantrepotte et al., 2012; Wei et al., 2022) 
or satellite-based estimation of phytoplankton functional types (Mouw 
et al., 2017; Bracher et al., 2017), by providing examples of extreme 
endmembers. Alternatively, it could also be used to evaluate the per
formance of Rrs(λ) classification methods (Ghatkar et al., 2019) in the 
case of massive red tides. 

Due to the collation of red tides from the same phytoplankton genus 
in several geographic locations over several seasons and years, the bio- 
optical variability associated with eco-physiological driven processes 
were minored (i.e., interspecific optical variability as well as physio
logical changes or bio-regional biases). Several bloom-forming species 
were however absent from the red tide database. In particular, blooms 
dominated by diatoms, which were not included in the database because 
of the lack of massive events meeting the selection criteria, are likely to 
be part of the last optical bloom type (Fig. 9a) due to the presence of 
fucoxanthin. We recommend to continue the effort of compiling and 
updating the S2 red tide database, as more blooms will be documented 
in the next years. Furthermore, in order to improve the characterization 
of red tides Rrs(λ), we also recommend to investigate the ability of high 
spatial resolution hyperspectral satellite missions (such as the recently 
launched Italian “PRecursore IperSpettrale della Missione Applicativa” 
(PRISMA) and German Environmental Mapping and Analysis Program 
(EnMAP) missions, as well as the future ESA Copernicus Hyperspectral 
Imaging Mission for the Environment (CHIME) and NASA Surface 
Biology and Geology (SBG) missions) to detect massive phytoplankton 
blooms. 

Table 2 
Standardized remote-sensing reflectance, as computed in Eq. (1), of the optical bloom types (OBT) shown in Fig. 3. OBT1 corresponds to a red tide dominated by 
Prorocentrum sp., Gymnodinium sp., Lingulodinium polyedra, Gonyaulax sp., Alexandrium sp., or Anabaenopsis sp. OBT2 corresponds to a red tide dominated by Tripos 
fusus, Protoceratium reticulatum, Karlodinium veneficum, Aureococcus anophagefferens, Karenia sp., Phaeocystis sp., or Margalefidinium polykrikoides. OBT3 corresponds to 
a red tide dominated by Mesodinium rubrum. OBT4 corresponds to a red tide dominated by Lepidodinium chlorophorum. OBT5 corresponds to a red tide dominated by the 
green Noctiluca scintillans, Microcystis sp., Trichodesmium sp., Nodularia spumigena, or Aphanizomenon sp. OBT6 corresponds to a red tide dominated by the red Noctiluca 
scintillans.  

Wavelength (nm) OBT1 OBT2 OBT3 OBT4 OBT5 OBT6 

560 0.63178334 1.10130824 0.05561066 1.77247436 0.29041012 0.64270819 
665 0.26812967 0.31244731 0.05801343 − 0.07194668 0.04885253 0.70332681 
704 2.50408597 2.33034944 2.43749154 1.76413907 0.76256485 0.73688903 
740 1.07955521 0.56002202 0.66936968 0.00456138 1.41839545 0.73913184 
783 1.00958199 0.55372242 0.52351892 − 0.03880845 1.48733335 0.75834278 
834 0.75747458 0.34137296 0.27509317 − 0.14019092 1.41161258 0.78936494 
865 0.40202742 0.14694422 − 0.08650186 − 0.32356164 1.36578262 0.65646161  
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4.2.2. Optical properties of massive phytoplankton blooms 
Complementary to the approach developed in the present study, 

another way to develop an improved understanding of the reflectance 
fingerprint of harmful algal blooms is to characterize the inherent op
tical properties (IOPs) of monospecific phytoplankton culture, and to 
estimate the corresponding Rrs(λ) using radiative transfer (Craig et al., 
2006; Xi et al., 2015; Kim et al., 2016; Martinez-Vicente et al., 2020). 
The measurement of the scattering coefficient and phase function at the 
relevant spectral and angular resolutions is however extremely chal
lenging (Harmel et al., 2016), and its incomplete characterization can 
yield significant biases in reflectance simulation (Xi et al., 2017; Harmel 
et al., 2021). With that respect, the Rrs(λ) database of nearly mono
specific massive blooms compiled in the present study could be useful to 
evaluate the results of radiative transfer modeling obtained by 
combining the IOPs of several types of microbial particles (e.g., Mobley 
and Stramski, 1997; Stramski and Mobley, 1997). 

In previous studies, the detection of a given bloom-forming phyto
plankton species was generally more efficient when using a classifica
tion metric computed from the absorption coefficient rather than from 
the remote-sensing reflectance (Craig et al., 2006; Xi et al., 2015). The 
interest of analysing the spectral differences between various phyto
plankton assemblages using the absorption coefficient rather than Rrs(λ) 
was also demonstrated in other studies (Torrecilla et al., 2011; Uitz 
et al., 2015). Interestingly, the present study provides an exception to 
such a rule. While the absorption coefficients of the phycoerythrin- 
bearing M. rubrum and Trichodesmium are quite similar (Dupouy et al., 
2008; Guzmán et al., 2016), these two species were part of two different 
bloom optical types. For such a particular case, the Rrs(λ)-based clus
tering proved more useful to separate the two types of red tides due to 
significant differences in their vertical distribution (i.e. Trichodesmium 
can form surface scums on top of the water surface, whereas M. rubrum 
typically concentrate within a dense thin layer near the water surface) 
and/or scattering coefficient (Dupouy et al., 2008; McKinna, 2015; 
Guzmán et al., 2016). 

The analysis of S2 red tide observations also made it possible to 
characterize Rrs(λ) variations in the SWIR, a spectral range rarely 
characterized otherwise. Interestingly, dense surface accumulations of 
buoyant cyanobacteria such as Trichodesmium or Microcystis (Qi et al., 
2020), as well as foam slicks associated with Phaeocystis blooms (Neu
kermans et al., 2018) displayed non-zero Rrs(1610 nm). While the ex
istence of such high SWIR signal poses challenges to glint and 
atmospheric correction, it is also promising for the detection of massive 
HABs. The systematic inclusion of at least one SWIR band is therefore 
strongly recommended for the next generation of both multi- and 
hyperspectral satellite sensors. 

5. Conclusion 

More than 100 red tides were documented worldwide using an 
original combination of in situ monitoring data together with S2 high 
spatial resolution remote sensing. The S2 red tide database covered 27 
phytoplankton bloom-forming species, and was dominated by di
noflagellates and cyanobacteria. A hierarchical cluster analysis deter
mined 6 optical bloom types with distinct reflectance shapes. Due to 
their unique pigment composition, red tides of M. rubrum (a 
phycoerythrin-bearing mixotrophic ciliate), green seawater discolor
ations of L. chlorophorum (a dinoflagellate with an unusual carotenoid 
composition), and red-orange surface aggregation of the red 
N. scintillans (a purely heterotrophic dinoflagellate devoid of Chl a) 
constituted 3 monospecific bloom clusters with unique reflectance 
fingerprint. Surface accumulations of buoyant cyanobacteria dominated 
another bloom optical type with a red-edge feature typical of floating 
algae (high NIR Rrs(λ) plateau, with several species also characterized by 
non-zero SWIR Rrs(λ)). Surface aggregations of the green N. scintillans, 
which contain Chl a due to a photosynthetic symbiont, were also part of 
this cluster. The last two clusters were taxonomically and spectrally 

more diverse. One cluster was dominated by blooms of dinoflagellates 
such as Lingulodinium polyedra, whereas the other cluster contained 
blooms caused by a dinoflagellate such as Karenia brevis, as well as by a 
prymnesiophyte (Phaeocystis) or a pelagophyte (A. anophagefferens). 

By providing a comprehensive assessment of the reflectance vari
ability underlying the many shades of red tides worldwide, the present 
study clearly demonstrated S2 ability to study highly concentrated 
phytoplankton blooms. It offers original perspectives for future studies, 
such as the potentiality to remotely recognize the dominant optical 
bloom type in the absence of in situ taxonomic data. This study has 
practical implications for HAB detection, and it is expected that our 
results will prompt monitoring agencies to systematically complement 
field sampling with the analysis of S2 observations, when possible. 
Eventually, as a similar “library-building” approach could be applied to 
other sensors (provided that their spatial resolution is high enough to 
consistently capture the small-scale features of highly concentrated 
phytoplankton patches in coastal waters), it is expected that the advent 
of high-resolution hyperspectral satellite missions such as PRISMA, 
EnMAP, SBG or CHIME will allow an enhanced detection of red tides 
diversity in the near future. There is no doubt that such instrumental 
progress will pave the way toward an increased understanding of the 
ecological processes underlying massive blooms, thus being beneficial to 
both plankton ecologists and water quality managers. 
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Mayot, and Beatriz Beker are thanked for sharing phytoplankton data 

P. Gernez et al.                                                                                                                                                                                                                                  



Remote Sensing of Environment 287 (2023) 113486

17

from the Berre lagoon. The author of the blog Fitopasión is thanked for 
the provision of very informative posts. The team “Eyes over Puget 
Sound” of the department of Ecology from the state of Washington is 
acknowledged for making available regular airborne surveys and in situ 
reports of seawater discolorations. Jennifer Wolny (Maryland Depart
ment of Natural Resources), as well as Michelle Tomlinson and Rick 
Stumpf (NOAA) are thanked for interesting discussions about red tides in 
Chesapeake Bay. PG is grateful to Kenneth Mertens (IFREMER LER/BO) 
and all participants of the Dino12 conference for stimulating scientific 
exchanges about dinoflagellates ecology and taxonomy. We are grateful 
to Victor Pochic for preparing the culture of the cryptophyte Teleaulax 
amphioxeia, and providing phycoerythrin extract. Finally, four anony
mous reviewers are acknowledged for their detailed comments, which 
significantly improved the manuscript. 

Appendix A. Supplementary data 

The supplementary information contains three types of material: (1) 
a text document with the evaluation of atmospheric correction perfor
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2019, Malaga (Spain). 

Craig, S.E., Lohrenz, S.E., Lee, Z., Mahoney, K.L., Kirkpatrick, G.J., Schofield, O.M., 
Steward, R.G., 2006. Use of hyperspectral remote sensing reflectance for detection 
and assessment of the harmful alga, karenia brevis. Appl. Opt. 45, 5414–5425. 

Crawford, D.W., 1989. Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. 
Prog. Ser. 58, 161–174. 

Darwin, C., 1839. Narrative of the surveying voyages of His Majesty’s ships adventure 
and Beagle, between the years 1826-36, describing their examination of the southern 
shores of South America, and the Beagle circumnavigation of the globe. In: Journal 
and Remarks, Vol. III. Henry Colburn, London.  
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Xi, H., Hieronymi, M., Krasemann, H., Röttgers, R., 2017. Phytoplankton group 
identification using simulated and in situ hyperspectral remote sensing reflectance. 
Front. Mar. Sci. 4, 272. 

Yih, W., Kim, H.S., Jeong, H.J., Myung, G., Kim, Y.G., 2004. Ingestion of cryptophyte 
cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 
36, 165–170. 

Yih, W., Kim, H.S., Myung, G., Park, J.W., Du Yoo, Y., Jeong, H.J., 2013. The red-tide 
ciliate Mesodinium rubrum in korean coastal waters. Harmful Algae 30, S53–S61. 

Zapata, M., Fraga, S., Rodríguez, F., Garrido, J.L., 2012. Pigment-based chloroplast types 
in dinoflagellates. Mar. Ecol. Progr. Ser. 465, 33–52. 

P. Gernez et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612131966
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612131966
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612131966
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605416527
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605416527
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605416527
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612172896
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612172896
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612172896
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605438017
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605438017
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605438017
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612226416
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612226416
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250612226416
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605455607
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605455607
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605487907
http://refhub.elsevier.com/S0034-4257(23)00037-8/rf202301250605487907

	The many shades of red tides: Sentinel-2 optical types of highly-concentrated harmful algal blooms
	1 Introduction
	2 Material and method
	2.1 Sentinel-2 red tide database
	2.2 Atmospheric and glint correction of Sentinel-2 data
	2.3 Compilation of red tide spectral library
	2.4 Analysis of the red tide spectral library

	3 Results
	3.1 Taxonomic and geographic diversity of the Sentinel-2 red tide database
	3.2 Optical diversity of the S2 red tide database
	3.2.1 Overall reflectance variability
	3.2.2 Optical bloom types
	3.2.3 Visual appearance of the optical bloom types


	4 Discussion
	4.1 Ecological significance of the bloom clusters
	4.1.1 Influence of biomass: blooms of buoyant cyanobacteria and Noctiluca
	4.1.2 Influence of pigments type: phycoerythrin and M. rubrum red waters
	4.1.3 Influence of pigments type: unusual carotenoid composition and L. chlorophorum green waters
	4.1.4 Influence of pigments type: peridinin, fucoxanthin, and other bloom clusters
	4.1.5 Reflectance clusters and harmful nature of phytoplankton blooms

	4.2 Current limitations and perspectives for red tide remote sensing
	4.2.1 Range of applicability of the optical bloom types
	4.2.2 Optical properties of massive phytoplankton blooms


	5 Conclusion
	Funding
	Author contributions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


